题目内容
【题目】如图,四棱锥
中,底面
是直角梯形,
,
,
,侧面
底面
,且
是以
为底的等腰三角形.
(Ⅰ)证明:![]()
(Ⅱ)若四棱锥
的体积等于
.问:是否存在过点
的平面
分别交
,
于点
,使得平面
平面
?若存在,求出
的面积;若不存在,请说明理由.
![]()
【答案】(Ⅰ)见解析;(Ⅱ)
.
【解析】试题分析: (Ⅰ)取
的中
,连接
,由三角形
是等腰三角形,则
,又
,可得
,从而证出
,可得
; (Ⅱ)取
中点
,连接
,可证明四边形
为平行四边形,进一步证明
,可得三角形
是直角三角形,由三角形面积公式可得面积.
试题解析:(Ⅰ)证明:取
的中点
,连接
,
![]()
∵
,
∴
.
∵
且
,
∴
是正三角形,且
,
又∵
,
平面![]()
∴
平面
,且
平面![]()
∴![]()
(Ⅱ)解:存在,理由如下:
分别取
的中点
,连接
,则
;
∵
是梯形,
且
,
∴
且
,则四边形
为平行四边形,
∴![]()
又∵
平面
,
平面![]()
∴
平面
,
平面
且
平面
,![]()
∴平面
平面![]()
∵侧面
,且平面
平面![]()
由(Ⅰ)知,
平面
,若四棱锥
的体积等于
,
则
,所以![]()
在
和
中,![]()
∴
,则![]()
∴
是直角三角形,则
.
【题目】心理学家分析发现“喜欢空间想象”与“性别”有关,某数学兴趣小组为了验证此结论,从全体组员中按分层抽样的方法抽取50名同学(男生30人、女生20人),给每位同学立体几何题、代数题各一道,让各位同学自由选择一道题进行解答,选题情况统计如下表:(单位:人)
立体几何题 | 代数题 | 总计 | |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
(1)能否有97.5%以上的把握认为“喜欢空间想象”与“性别”有关?
(2)经统计得,选择做立体几何题的学生正答率为
,且答对的学生中男生人数是女生人数的5倍,现从选择做立体几何题且答错的学生中任意抽取两人对他们的答题情况进行研究,求恰好抽到男女生各一人的概率.
附表及公式:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
![]()