题目内容

设数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1).
(I)求证:数列{an}是等差数列;
(II)设数列{
1anan+1
}
的前n项和为Tn,求Tn
分析:(1)根据题意,可得Sn=nan-2n(n-1)与则Sn+1=nan+1-2(n+1)n,结合an+1=Sn+1-Sn可得an+1=(n+1)an+1-nan-4n,化简可得an+1-an=4,即可得结论;
(2)由(1)可得an=4n-3,则Tn=
1
a1a2
+…+
1
anan+1
=
1
1×5
+
1
5×9
+
1
9×13
+…+
1
(4n-3)×(4n+1)
,由裂项相消法,计算可得答案.
解答:解:(I)由Sn=nan-2n(n-1),
则Sn+1=nan+1-2(n+1)n,
又由an+1=Sn+1-Sn可得an+1=Sn+1-Sn=(n+1)an+1-nan-4n,
即an+1-an=4,
则数列{an}是以1为首项,4为公差的等差数列;
(II)由(1)可得an=4n-3.
Tn=
1
a1a2
+…+
1
anan+1

=
1
1×5
+
1
5×9
+
1
9×13
+…+
1
(4n-3)×(4n+1)

=
1
4
(1-
1
5
+
1
5
-
1
9
+
1
9
-
1
13
+…+
1
4n-3
-
1
4n+1
)

=
1
4
(1-
1
4n+1
)
点评:本题考查用裂项相消法求数列的和以及等差数列的确定;利用an+1=Sn+1-Sn的关系,结合题意,得到an+1-an=4,是解题的关键点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网