题目内容
设数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1).
(I)求证:数列{an}是等差数列;
(II)设数列{
}的前n项和为Tn,求Tn.
(I)求证:数列{an}是等差数列;
(II)设数列{
| 1 | anan+1 |
分析:(1)根据题意,可得Sn=nan-2n(n-1)与则Sn+1=nan+1-2(n+1)n,结合an+1=Sn+1-Sn可得an+1=(n+1)an+1-nan-4n,化简可得an+1-an=4,即可得结论;
(2)由(1)可得an=4n-3,则Tn=
+…+
=
+
+
+…+
,由裂项相消法,计算可得答案.
(2)由(1)可得an=4n-3,则Tn=
| 1 |
| a1a2 |
| 1 |
| anan+1 |
| 1 |
| 1×5 |
| 1 |
| 5×9 |
| 1 |
| 9×13 |
| 1 |
| (4n-3)×(4n+1) |
解答:解:(I)由Sn=nan-2n(n-1),
则Sn+1=nan+1-2(n+1)n,
又由an+1=Sn+1-Sn可得an+1=Sn+1-Sn=(n+1)an+1-nan-4n,
即an+1-an=4,
则数列{an}是以1为首项,4为公差的等差数列;
(II)由(1)可得an=4n-3.
则Tn=
+…+
=
+
+
+…+
=
(1-
+
-
+
-
+…+
-
)
=
(1-
).
则Sn+1=nan+1-2(n+1)n,
又由an+1=Sn+1-Sn可得an+1=Sn+1-Sn=(n+1)an+1-nan-4n,
即an+1-an=4,
则数列{an}是以1为首项,4为公差的等差数列;
(II)由(1)可得an=4n-3.
则Tn=
| 1 |
| a1a2 |
| 1 |
| anan+1 |
=
| 1 |
| 1×5 |
| 1 |
| 5×9 |
| 1 |
| 9×13 |
| 1 |
| (4n-3)×(4n+1) |
=
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 9 |
| 1 |
| 9 |
| 1 |
| 13 |
| 1 |
| 4n-3 |
| 1 |
| 4n+1 |
=
| 1 |
| 4 |
| 1 |
| 4n+1 |
点评:本题考查用裂项相消法求数列的和以及等差数列的确定;利用an+1=Sn+1-Sn的关系,结合题意,得到an+1-an=4,是解题的关键点.
练习册系列答案
相关题目