题目内容
已知数列{an}的前n项和为Sn,若a1=0,n•an+1=Sn+n(n+1),
(1)求数列{an}的通项公式;
(2)若数列{bn}满足an+log3n=log3bn,求数列{bn}的前n项和;
(3)设Pn=a1+a4+a7+…+a3n-2,Qn=a10+a12+a14+…+a2n+8,其中n∈N*,试比较Pn与Qn的大小,并证明你的结论.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足an+log3n=log3bn,求数列{bn}的前n项和;
(3)设Pn=a1+a4+a7+…+a3n-2,Qn=a10+a12+a14+…+a2n+8,其中n∈N*,试比较Pn与Qn的大小,并证明你的结论.
分析:(1)把n=1代入已知的等式,由S1=a1=2,得到第2项与第1项的差为常数2,然后由已知的等式,再写一式,两式相减得第n+1项与第n项的差也为常数2,从而得到此数列为首项是0,公差也是2的等差数列,写出通项公式即可;
(2)求出bn,设前n项和为Tn,利用错位相减法,可求数列{bn}的前n项和;
(3)分别求出Pn与Qn,作差,可得结论.
(2)求出bn,设前n项和为Tn,利用错位相减法,可求数列{bn}的前n项和;
(3)分别求出Pn与Qn,作差,可得结论.
解答:解:(1)把n=1,代入n•an+1=Sn+n(n+1)得:1•a2=S1+1=a1+1=2+1=3,即a2-a1=2,
∵n•an+1=Sn+n(n+1)①,∴n≥2时,(n-1)•an=Sn-1+n(n-1)②,
①-②得:n•an+1-(n-1)•an=an+2n,
化简得:an+1-an=2(n≥2),
∵a2-a1=2,∴an+1-an=2(n∈N+),
即数列{an}是以0为首项,2为公差的等差数列,
∴an=0+2(n-1)=2(n-1);
(2)由an+log3n=log3bn得:bn=n•32n-2(n∈N*)
Tn=b1+b2+b3++bn=30+2•32+3•34+…+n•32n-2,①
∴9Tn=30+2•32+3•34+…+n•32n,②
②-①得:8Tn=n•32n-(30+32+34+…+32n-2)=n•32n-
∴Tn=
;
(3)∵an=2(n-1),
∴Pn=a1+a4+a7+…+a3n-2=
=n(3n-3),Qn=a10+a12+a14+…+a2n+8=
=n(2n+16)
∴Pn-Qn=n(3n-3)-n(2n+16)=n2-19n
若n2-19n>0,即n>19时,Pn>Qn;若n2-19n=0,即n=19时,Pn=Qn;若n2-19n<0,即1≤n<19时,Pn<Qn.
∵n•an+1=Sn+n(n+1)①,∴n≥2时,(n-1)•an=Sn-1+n(n-1)②,
①-②得:n•an+1-(n-1)•an=an+2n,
化简得:an+1-an=2(n≥2),
∵a2-a1=2,∴an+1-an=2(n∈N+),
即数列{an}是以0为首项,2为公差的等差数列,
∴an=0+2(n-1)=2(n-1);
(2)由an+log3n=log3bn得:bn=n•32n-2(n∈N*)
Tn=b1+b2+b3++bn=30+2•32+3•34+…+n•32n-2,①
∴9Tn=30+2•32+3•34+…+n•32n,②
②-①得:8Tn=n•32n-(30+32+34+…+32n-2)=n•32n-
| 32n-1 |
| 8 |
∴Tn=
| (8n-1)32n-1 |
| 64 |
(3)∵an=2(n-1),
∴Pn=a1+a4+a7+…+a3n-2=
| n(6n-6) |
| 2 |
| n(18+4n+14) |
| 2 |
∴Pn-Qn=n(3n-3)-n(2n+16)=n2-19n
若n2-19n>0,即n>19时,Pn>Qn;若n2-19n=0,即n=19时,Pn=Qn;若n2-19n<0,即1≤n<19时,Pn<Qn.
点评:本题考查数列的递推式,考查数列求和,考查大小比较,确定数列的通项,掌握求和公式是关键,属于中档题.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |