题目内容
已知函数f(x)=|x2-4x+3|.(1)求函数f(x)的单调区间,并指出增减性;
(2)求集合M={m|使方程f(x)=mx有四个不相等的实根}.?
解析:![]()
(1)递增区间为[1,2],[3,+∞),?
递减区间为(-∞,1],[2,3).?
(2)?
![]()
?
由图象可知y=f(x)与y=mx图象有四个不同的交点,直线y=mx应介于x轴与切线l1之间.?
![]()
Δ=0得m=4±2
.
m=4+2
时,x=-![]()
(1,3)舍去.?
∴m=4-2
,l1方程为y=(4-2
)x.?
∴m∈(0,4-2
).
练习册系列答案
相关题目
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|