题目内容

设集合A={x2,2x-1,-4},B={x-5,1-x,9},若A∩B={9},则A∪B=


  1. A.
    {-8,-7,-4}
  2. B.
    {4,7,8,9}
  3. C.
    {-8,-7,-4,4,9}
  4. D.
    {-8,-7,4,9}
C
由A∩B={9},知9∈A,
∴x2=9,或2x-1=9,解得x=±3,或x=5.
当x=3时,A={9,5,-4},B={-2,-2,9},B中的元素违背了互异性,舍去;
当x=-3时,A={9,-7,-4},B={-8,4,9}符合题意,此时A∪B={-8,-7,-4,4,9};
当x=5时,此时A={25,9,-4},B={0,-4,9},此时A∩B={-4,9},
这与A∩B={9}矛盾,故舍去.
综上所述x=-3,且A∪B={-8,-7,-4,4,9}.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网