题目内容
【题目】已知函数
,
.
(1)当
时,证明
;
(2)当
时,对于两个不相等的实数
、
有
,求证:
.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)a=1时,对f(x)求导,判断f(x)单调性求出它的最小值即可证明。
(2)先判断函数f(x)的单调区间,再构造
,求导判断它的单调性,根据
,且
,可得
不在同一个单调区间内,不妨设
,利用函数的单调性即可证明.
(1)∵
,∴
,∴
,
∴
在
上单调递减,在
上单调递增.
∴
时,
取得极小值,即最小值
.
即
.
(2)证明:当
时,
,
则
,∴
时,
,
单调递减,
时,
,
单调递增,
令
,
则
,∴
.
当
时,
,
,
,∴
,
单调递减,
∴
,即
,
∴当
时,
.
又
在
内是增函数,在
内是减函数.
又∵
,且
,∴
,
不在同一单调区间内,
不妨设
,由上可知:
.
∵
,∴
.
∵
,
,又
在
内是增函数,∴
,即
.
练习册系列答案
相关题目
【题目】某公司为了解用户对其产品的满意度,从某地区随机调查了100个用户,得到用户对产品的满意度评分频率分布表如下:
组别 | 分组 | 频数 | 频率 |
第一组 |
| 10 | 0.1 |
第二组 |
| 20 | 0.2 |
第三组 |
| 40 | 0.4 |
第四组 |
| 25 | 0.25 |
第五组 |
| 5 | 0.05 |
合计 | 100 | 1 |
(1)根据上面的频率分布表,估计该地区用户对产品的满意度评分超过70分的概率;
(2)请由频率分布表中数据计算众数、中位数,平均数,根据样本估计总体的思想,若平均分低于75分,视为不满意.判断该地区用户对产品是否满意?