题目内容
(1)求证:AE⊥平面BCE;
(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
分析:(1)由线面垂直的性质可证得AE⊥BC且AE⊥BF,进而由线面垂直的判定定理得到AE⊥平面BCE
(2)在三角形ABE中过M点作MG∥AE交BE于G点,在三角形BEC中过G点作GN∥BC交EC于N点,连MN,由面面平行的判定定理可得平面MGN∥平面ADE,进而MN∥平面DAE.
(2)在三角形ABE中过M点作MG∥AE交BE于G点,在三角形BEC中过G点作GN∥BC交EC于N点,连MN,由面面平行的判定定理可得平面MGN∥平面ADE,进而MN∥平面DAE.
解答:证明:(1)∵AD⊥平面ABE,AD∥BC
∴BC⊥平面ABE,
又∵AE?平面ABE,
∴AE⊥BC(2分)
又∵BF⊥平面ACE,AE?平面ACE,
∴AE⊥BF
∵BC∩BF=B,BC,BF?平面BCE
∴AE⊥平面BCE
(2)在三角形ABE中过M点作MG∥AE交BE于G点,
在三角形BEC中过G点作GN∥BC交EC于N点,连MN,
则由比例关系易得CN=
CE
∵MG∥AE,MG?平面ADE,AE?平面ADE,
∴MG∥平面ADE
同理,GN∥平面ADE
∵MG∩GN=G,MG,GN?平面MGN
∴平面MGN∥平面ADE
又MN?平面MGN
∴MN∥平面ADE
∴N点为线段CE上靠近C点的一个三等分点
∴BC⊥平面ABE,
又∵AE?平面ABE,
∴AE⊥BC(2分)
又∵BF⊥平面ACE,AE?平面ACE,
∴AE⊥BF
∵BC∩BF=B,BC,BF?平面BCE
∴AE⊥平面BCE
(2)在三角形ABE中过M点作MG∥AE交BE于G点,
在三角形BEC中过G点作GN∥BC交EC于N点,连MN,
则由比例关系易得CN=
| 1 |
| 3 |
∵MG∥AE,MG?平面ADE,AE?平面ADE,
∴MG∥平面ADE
同理,GN∥平面ADE
∵MG∩GN=G,MG,GN?平面MGN
∴平面MGN∥平面ADE
又MN?平面MGN
∴MN∥平面ADE
∴N点为线段CE上靠近C点的一个三等分点
点评:本题考查的知识点是直线与平面垂直的判定,直线与平面平行的判定,熟练掌握空间线面关系的定义及判定是解答的关键.
练习册系列答案
相关题目