搜索
题目内容
关于x的不等式
的解集为________.
试题答案
相关练习册答案
分析:由于x
2
-(a+
+1)+a+
=(x-1)[x-(a+
)]<0,a>0,从而可得答案.
解答:∵a>0,
∴a+
≥2>1,
又x
2
-(a+
+1)+a+
=(x-1)[x-(a+
)]<0,
∴1<x<a+
.
∴x
2
-(a+
+1)+a+
<0的解集为(1,a+
).
故答案为:(1,a+
).
点评:本题考查一元二次不等式的解法,将x
2
-(a+
+1)+a+
<0转化为(x-1)[x-(a+
)]<0是关键,属于基础题.
练习册系列答案
全程突破系列答案
同步拓展与训练系列答案
升级创优卷系列答案
一课3练三好练习系列答案
金版卷王名师面对面期末大冲刺系列答案
大阅读周周练系列答案
高分拔尖提优教程系列答案
培优闯关NO1期末冲刺卷系列答案
全解全习课时达标讲练测系列答案
完全大考卷冲刺名校系列答案
相关题目
17、设关于x的不等式lg(|x+3|+|x-7|)>a
(1)当a=1时,解这个不等式;
(2)当a为何值时,这个不等式的解集为R.
选修4-5:不等式选讲
已知关于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)当a=1时,求此不等式的解集;
(2)若此不等式的解集为R,求实数a的取值范围.
选修4-5:不等式选讲
已知关于x的不等式|ax-2|+|ax-a|≥2(a>0).
(1)当a=1时,求此不等式的解集;
(2)若此不等式的解集为R,求实数a的取值范围.
选修4-5:不等式选讲
已知关于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)当a=1时,求此不等式的解集;
(2)若此不等式的解集为R,求实数a的取值范围.
设关于x的不等式lg(|x+3|+|x-7|)>a
(1)当a=1时,解这个不等式;
(2)当a为何值时,这个不等式的解集为R.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案