题目内容

下列关于函数f(x)=(2x-x2)ex的判断正确的是(  )
①f(x)>0的解集是{x|0<x<2};
②f(-
2
)是极小值,f(
2
)是极大值;
③f(x)没有最小值,也没有最大值.
A.①③B.①②③C.②D.①②
由f(x)>0?(2x-x2)ex>0?2x-x2>0?0<x<2,故①正确;
f′(x)=ex(2-x2),由f′(x)=0得x=±
2

由f′(x)<0得x>
2
或x<-
2

由f′(x)>0得-
2
<x<
2

∴f(x)的单调减区间为(-∞,-
2
),(
2
,+∞).单调增区间为(-,
2
).
∴f(x)的极大值为f(
2
),极小值为f(-
2
),故②正确.
∵x<-
2
时,f(x)<0恒成立.
∴f(x)无最小值,但有最大值f(
2

∴③不正确.
故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网