题目内容

锐角三角形ABC中,若A=2B,A,B,C所对的边分别为a,b,c.则下列四个结论:
①sin3B=sin2C②tan
3B
2
tan
C
2
=1
π
6
<B<
π
4
a
b
∈(
2
3
]

其中正确的是
②③④
②③④
分析:锐角三角形ABC中,由A=2B,可以由此解出B的取值范围,再由此范围对四个命题进行判断,得出真假
解答:解:∵锐角三角形ABC中,若A=2B
2B<
π
2
3B>
π
2

π
6
<B<
π
4

由于3B+C=π,故有sin3B=sinC,所以sin3B=sin2C不成立,①错误;
由于3B+C=π,可得
3B
2
+
C
C
=
π
2
,故有tan
3B
2
tan
C
2
=1
,②正确;
由前解知
π
6
<B<
π
4
故③正确;
由于
a
b
=
sin2B
sinB
=2cosB
,又
π
6
<B<
π
4
,故有2cosB∈(
2?
3?
]
,即得
a
b
∈(
2
3
]
正确
综上,②③④正确,
故答案为:②③④.
点评:本题考查命题的真假判断与应用,解题的关键是熟练掌握三角中的相关公式,对条件锐角三角形ABC中,A=2B的正确转化是本题的难点
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网