题目内容
已知等差数列{an}的首项a1>0,公差d>0,前n项和为Sn,设m,n,p∈N*,且m+n=2p(1)求证:Sn+Sm≥2Sp;
(2)求证:Sn•Sm≤(Sp)2;
(3)若S1005=1,求证:
| 2009 |
| n=1 |
| 1 |
| Sn |
分析:(1)由等差数列前n项和公式可得Sn=
n2+(a1-
)n,代入Sn+Sm,利用m+n=2p可证
(2)由等差数列前n项和公式可得Sn=
n2+(a1-
)n,代入SnSm,利用m+n=2p可证
(3)由(2)可得
≥
,从而有
=
+
+
=
+
+
,再利用(1)的结论可证.
| d |
| 2 |
| d |
| 2 |
(2)由等差数列前n项和公式可得Sn=
| d |
| 2 |
| d |
| 2 |
(3)由(2)可得
| Sp |
| Sm |
| Sn |
| Sp |
| 2009 |
| n=1 |
| 1 |
| Sn |
| S1005 |
| S1 |
| S1005 |
| S2 |
| S1005 |
| S2009 |
| S2009 |
| S1005 |
| S2008 |
| S1005 |
| S1 |
| S1005 |
解答:证明:(1)由等差数列前n项和公式可得Sn=
n2+(a1-
)n,
∴Sn+Sm=
n2+(a1-
)n+
m2+(a1-
)m=
(n2+m2)+( m+n)a1-
(m+n)≥2Sp
(2)SnSm=[
n2+(a1-
)n][
m2+(a1-
)m]≤
p2+
(a1-
)p3+(a1-
)2p2,
∴SnSm≤(Sp)2
(3)
=
+
+
=
+
+
≥2009
| d |
| 2 |
| d |
| 2 |
∴Sn+Sm=
| d |
| 2 |
| d |
| 2 |
| d |
| 2 |
| d |
| 2 |
| d |
| 2 |
| d |
| 2 |
(2)SnSm=[
| d |
| 2 |
| d |
| 2 |
| d |
| 2 |
| d |
| 2 |
| d2 |
| 4 |
| d |
| 2 |
| d |
| 2 |
| d |
| 2 |
∴SnSm≤(Sp)2
(3)
| 2009 |
| n=1 |
| 1 |
| Sn |
| S1005 |
| S1 |
| S1005 |
| S2 |
| S1005 |
| S2009 |
| S2009 |
| S1005 |
| S2008 |
| S1005 |
| S1 |
| S1005 |
点评:本题主要考查等差数列的前n项和公式及不等式的基本性质,考查等价转化思想,属于中档题.
练习册系列答案
相关题目