题目内容

已知等差数列{an}的首项a1>0,公差d>0,前n项和为Sn,设m,n,p∈N*,且m+n=2p
(1)求证:Sn+Sm≥2Sp
(2)求证:Sn•Sm≤(Sp2
(3)若S1005=1,求证:
2009
n=1
1
Sn
≥2009
分析:(1)由等差数列前n项和公式可得Sn=
d
2
n2+(a1-
d
2
)n
,代入Sn+Sm,利用m+n=2p可证
(2)由等差数列前n项和公式可得Sn=
d
2
n2+(a1-
d
2
)n
,代入SnSm,利用m+n=2p可证
(3)由(2)可得
Sp
Sm
Sn
Sp
,从而有
2009
n=1
1
Sn
=
S1005
S1
+
S1005
S2
+
S1005
S2009
=
S2009
S1005
+
S2008
S1005
+
S1
S1005
,再利用(1)的结论可证.
解答:证明:(1)由等差数列前n项和公式可得Sn=
d
2
n2+(a1-
d
2
)n

∴Sn+Sm=
d
2
n2+(a1-
d
2
)n+ 
d
2
m2+(a1-
d
2
)m
=
d
2
(n2+m2)+( m+n)a1-
d
2
(m+n)≥
2Sp

(2)SnSm=[
d
2
n2+(a1-
d
2
)n][
d
2
m2+(a1-
d
2
)m]
d2
4
p2+
d
2
(a1-
d
2
)p3+(a1-
d
2
)
2
p2

∴SnSm≤(Sp2

(3)
2009
n=1
1
Sn
=
S1005
S1
+
S1005
S2
+
S1005
S2009
=
S2009
S1005
+
S2008
S1005
+
S1
S1005
≥2009

点评:本题主要考查等差数列的前n项和公式及不等式的基本性质,考查等价转化思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网