题目内容
(本小题满分12分)
某工厂拟建一座平面图为矩形且面积为200平方米的三级污水处理池(平面图如图)。由于地形限制,长、宽都不能超过16米。如果池外圈四周壁造价为每平方米400元,中间两条隔墙造价为每平方米248元,池底造价为每平方米80元,池壁的厚度不计。试设计污水处理池的长和宽,使总造价最低,并求出最低总造价。(池深用h 表示)
某工厂拟建一座平面图为矩形且面积为200平方米的三级污水处理池(平面图如图)。由于地形限制,长、宽都不能超过16米。如果池外圈四周壁造价为每平方米400元,中间两条隔墙造价为每平方米248元,池底造价为每平方米80元,池壁的厚度不计。试设计污水处理池的长和宽,使总造价最低,并求出最低总造价。(池深用h 表示)
当
时,y 有最小值 为 16000+29000h 元。
解:设长为x米,则宽为
米,总造价为y元

由
得 
因为
在
上是减函数,
所以当
时,y 有最小值 为 16000+29000h 元。
由
因为
所以当
练习册系列答案
相关题目