题目内容
已知函数f(x)=2x-1,对于满足0<x1<x2<2的任意x1、x2,给出下列结论:
(1)(x1-x2)[f(x2)-f(x1)]<0; (2)x2f(x1)<x1f(x2);
(3)f(x2)-f(x1)>x2-x1; (4)
>f(
),
其中正确结论的序号是( )
(1)(x1-x2)[f(x2)-f(x1)]<0; (2)x2f(x1)<x1f(x2);
(3)f(x2)-f(x1)>x2-x1; (4)
| f(x1)+f(x2) |
| 2 |
| x1+x2 |
| 2 |
其中正确结论的序号是( )
| A.(1)(2) | B.(1)(3) | C.(3)(4) | D.(2)(4) |
∵f(x)=2x-1,0<x1<x2<2,
∴x1-x2<0,f(x2)-f(x1)>0,
∴(x1-x2)[f(x2)-f(x1)]<0,故(1)成立;
∵f(x)=2x-1,0<x1<x2<2,
∴0<f(x1)<f(x2)<3,
∴x2f(x1)<x1f(x2)不成立,即(2)不成立;
∵f(x)=2x-1,0<x1<x2<2,
∴0<f(x1)<f(x2)<3,
∴f(x2)-f(x1)>x2-x1成立,即(3)成立;
∵f(x)=2x-1,0<x1<x2<2,
∴
=
-1,
f(
) =2
-1,
∴
>f(
)不成立.
故选B.
∴x1-x2<0,f(x2)-f(x1)>0,
∴(x1-x2)[f(x2)-f(x1)]<0,故(1)成立;
∵f(x)=2x-1,0<x1<x2<2,
∴0<f(x1)<f(x2)<3,
∴x2f(x1)<x1f(x2)不成立,即(2)不成立;
∵f(x)=2x-1,0<x1<x2<2,
∴0<f(x1)<f(x2)<3,
∴f(x2)-f(x1)>x2-x1成立,即(3)成立;
∵f(x)=2x-1,0<x1<x2<2,
∴
| f(x1) +f(x2) |
| 2 |
| 2x1+2x2 |
| 2 |
f(
| x1+x2 |
| 2 |
| x1+x2 |
| 2 |
∴
| f(x1)+f(x2) |
| 2 |
| x1+x2 |
| 2 |
故选B.
练习册系列答案
相关题目