题目内容

数列{an}的前n项和Sn满足:t(Sn+1+1)-(2t+1)Sn,nN*,t≠0.

(1)求证:{an}是等比数列;

(2)若{an}的公比为f(t),数列{bn}满足:b1=1,bn+1=f(),求{bn}的通项公式;

(3)定义数列{cn}为:cn=,求{cn}的前n项和Tn,并求Tn.

解:(1)由T(Sn+1+1)=(2T+1)Sn,?

T(Sn+1)=(2T+1)Sn-1,?

相减得=2+,∴{an}是等比数列.                                                                    

(2)bn+1=f()=2+bn,?

bn+1-bn=2,bn=1,得bn=2n-1.                                                                                    ?

(3)cn==

=(-),?

Tn=[(1-)+(-)+…+(-)=(1-)].?

Tn=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网