题目内容
数列{an}的前n项和Sn满足:t(Sn+1+1)-(2t+1)Sn,n∈N*,t≠0.(1)求证:{an}是等比数列;
(2)若{an}的公比为f(t),数列{bn}满足:b1=1,bn+1=f(
),求{bn}的通项公式;
(3)定义数列{cn}为:cn=
,求{cn}的前n项和Tn,并求
Tn.
解:(1)由T(Sn+1+1)=(2T+1)Sn,?
得T(Sn+1)=(2T+1)Sn-1,?
相减得
=2+
,∴{an}是等比数列.
(2)bn+1=f(
)=2+bn,?
∴bn+1-bn=2,bn=1,得bn=2n-1. ?
(3)cn=
=![]()
=
(
-
),?
∴Tn=
[(1-
)+(
-
)+…+(
-
)=
(1-
)].?
∴
Tn=
.
练习册系列答案
相关题目