题目内容
函数f(x)=4sin2(
+x)-2
cos2x-2(x∈R)的单调减区间是______.
| π |
| 4 |
| 3 |
f(x)=4sin2(
+x)-2
cos2x-2
=2[1-cos(
+2x)]-2
cos2x-2
=4(
sin2x-
cos2x)
=4sin(2x-
),
当2kπ+
≤2x-
≤2kπ+
,k∈Z,即kπ+
≤x≤kπ+
时,
正弦函数sin(2x-
)单调递减,
则函数f(x)的单调减区间是[kπ+
,kπ+
],k∈Z.
故答案为:[kπ+
,kπ+
],k∈Z
| π |
| 4 |
| 3 |
=2[1-cos(
| π |
| 2 |
| 3 |
=4(
| 1 |
| 2 |
| ||
| 2 |
=4sin(2x-
| π |
| 3 |
当2kπ+
| π |
| 2 |
| π |
| 3 |
| 3π |
| 2 |
| 5π |
| 12 |
| 11π |
| 12 |
正弦函数sin(2x-
| π |
| 3 |
则函数f(x)的单调减区间是[kπ+
| 5π |
| 12 |
| 11π |
| 12 |
故答案为:[kπ+
| 5π |
| 12 |
| 11π |
| 12 |
练习册系列答案
相关题目