题目内容
如图,A-BCDE是一个四棱锥,AB⊥平面BCDE,且四边形BCDE为矩形,则图中互相垂直的平面共有( )

| A.4组 | B.5组 | C.6组 | D.7组 |
因为AB⊥平面BCDE,所以平面ABC⊥平面BCDE,平面ABD⊥平面BCDE,平面ABE⊥平面BCDE,
又因为四边形BCDE为矩形,所以BC⊥平面ABE⇒平面ABC⊥平面ABE,
同理可得平面ACD⊥平面ABC.平面ADE⊥平面ABE
故图中互相垂直的平面共有6组.
故选C.
又因为四边形BCDE为矩形,所以BC⊥平面ABE⇒平面ABC⊥平面ABE,
同理可得平面ACD⊥平面ABC.平面ADE⊥平面ABE
故图中互相垂直的平面共有6组.
故选C.
练习册系列答案
相关题目