题目内容

已知奇函数f(x)的定义域是R,且f(x)=f(1-x),当0≤x≤
1
2
时,f(x)=x-x2
(1)求证:f(x)是周期函数;
(2)求函数f(x)在区间[1,2]上的解析式;
(3)求函数f(x)的值域.
(1)f(x+2)=f(1-(x+2))=f(-x-1)=-f(x+1)=-f(1-(x+1))=-f(-x)=f(x),
所以f(x)是周期为2的函数.
(2)∵当x∈[
1
2
,1]
时,f(x)=f(1-x)=(1-x)-(1-x)2=x-x2
∴x∈[0,1]时,f(x)=x-x2
∴当x∈[1,2]时,f(x)=f(x-2)=-f(2-x)=(2-x)2-(2-x)=x2-3x+2.
∴当x∈[1,2]时,f(x)=x2-3x+2.
(3)由函数是以2为周期的函数,故只需要求出一个周期内的值域即可,由(2)知
f(x)=
x-x2   (0≤x≤1)
x+x2   (-1≤x≤0)

故在[-1,1]上函数的值域是[-
1
4
1
4
]

故值域为[-
1
4
1
4
]
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网