题目内容
若|
|=1,|
|=
,(
-
)•
=0,则
与
的夹角是
.
| a |
| b |
| 2 |
| a |
| b |
| a |
| a |
| b |
| π |
| 4 |
| π |
| 4 |
分析:由(
-
)•
=0,得出
2-
•
=0.将|
|=1代入得出,
•
=1,再由两个向量夹角的范围求出θ的值.
| a |
| b |
| a |
| a |
| a |
| b |
| a |
| a |
| b |
解答:解:由(
-
)•
=0,得出
2-
•
=0.将|
|=1代入得出,
•
=1
则
与
的夹角θ的余弦值cosθ=
=
=
又0≤θ≤π,所以θ=
故答案为:
| a |
| b |
| a |
| a |
| a |
| b |
| a |
| a |
| b |
则
| a |
| b |
| ||||
|
|
| 1 | ||
1×
|
| ||
| 2 |
又0≤θ≤π,所以θ=
| π |
| 4 |
故答案为:
| π |
| 4 |
点评:本题主要考查两个向量的数量积的定义,两个向量夹角的范围,根据三角函数的值求角,属于基础题.
练习册系列答案
相关题目