题目内容
已知函数(Ⅰ)求f(x)的最大值和最小值;
(Ⅱ)若不等式|f(x)-m|<2在定义域上恒成立,求实数m的取值范围.
【答案】分析:(Ⅰ)利用二倍角公式和两角和公式对函数的解析式进行化简整理,进而根据x的范围和正弦函数的单调性求得函数的最大和最小值.
(Ⅱ)问题转化为f(x)-2<m<f(x)+2恒成立,进而利用(1)中函数的最大值和最小值,推断出m>f(x)max-2且m<f(x)min+2,求得m的范围.
解答:解:(Ⅰ)∵
=
.
又∵
,
∴
,
即
,
∴f(x)max=3,f(x)min=2.
(Ⅱ)∵|f(x)-m|<2?f(x)-2<m<f(x)+2,
,
∴m>f(x)max-2且m<f(x)min+2,
∴1<m<4,即m的取值范围是(1,4).
点评:本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象和性质解题的能力.
(Ⅱ)问题转化为f(x)-2<m<f(x)+2恒成立,进而利用(1)中函数的最大值和最小值,推断出m>f(x)max-2且m<f(x)min+2,求得m的范围.
解答:解:(Ⅰ)∵
又∵
∴
即
∴f(x)max=3,f(x)min=2.
(Ⅱ)∵|f(x)-m|<2?f(x)-2<m<f(x)+2,
∴m>f(x)max-2且m<f(x)min+2,
∴1<m<4,即m的取值范围是(1,4).
点评:本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象和性质解题的能力.
练习册系列答案
相关题目