题目内容

18.已知22x≤($\frac{1}{4}$)x-2
(1)求x的范围;
(2)求函数y=($\frac{1}{4}$)x-1-4($\frac{1}{2}$)x-2的值域.

分析 (1)由于22x≤($\frac{1}{4}$)x-2=24-2x,根据指数函数的单调性可得2x≤4-2x,解得x即可.
(2)函数y═$4•(\frac{1}{2})^{2x}$-4×$(\frac{1}{2})^{x}$-2=$4[(\frac{1}{2})^{x}-\frac{1}{2}]^{2}$-3,由于x≤1,可得$(\frac{1}{2})^{x}$$≥\frac{1}{2}$,再利用二次函数的单调性即可得出.

解答 解:(1)∵22x≤($\frac{1}{4}$)x-2=24-2x,∴2x≤4-2x,解得x≤1.
∴x的范围是x≤1.
(2)函数y=($\frac{1}{4}$)x-1-4($\frac{1}{2}$)x-2=$4•(\frac{1}{2})^{2x}$-4×$(\frac{1}{2})^{x}$-2=$4[(\frac{1}{2})^{x}-\frac{1}{2}]^{2}$-3,
∵x≤1,∴$(\frac{1}{2})^{x}$$≥\frac{1}{2}$,
∴y≥-3,
∴函数的值域为[-3,+∞).

点评 本题考查了指数函数的单调性、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网