题目内容
已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为A.1 B.
C.
D.![]()
C?
解析:原方程有四个根,?
∴方程x2-2x+m=0和x2-2x+n=0各有两个根.?
又∵这两个方程的两根之和都等于2,且这四个根组成等差数列{an},?
可设这四个根为a1、a2、a3、a4.?
∴a1+a4=a2+a3=2.?
∵|m-n|=|n-m|,不妨设上述方程的根分别为a1、a4和a2、a3,则a2+a3=a1+a4=2.??
设公差为d,∴2a1+3d=2.?
∴2·
+3d=2.?
∴d=
.?
∴a2=
+
=
,a3=
,a4=
.??
则|m-n|=|a1a4-a2a3|=|
×
-
×
|=
.?
故选C.
练习册系列答案
相关题目
已知方程x2+2x-a=0,其中a<0,则在复数范围内关于该方程的根的结论正确的是( )
| A、该方程一定有一对共轭虚根 | B、该方程可能有两个正实根 | C、该方程两根的实部之和等于-2 | D、若该方程有虚根,则其虚根的模一定小于1 |