题目内容
已知函数f(x)=cos(2x-
)+2sin(x-
)sin(x+
),x∈R
(I)求函数f(x)的单调递增区间与对称轴方程;
(II)当x∈[-
,
]时,求函数f(x)的值域.
| π |
| 3 |
| π |
| 4 |
| π |
| 4 |
(I)求函数f(x)的单调递增区间与对称轴方程;
(II)当x∈[-
| π |
| 12 |
| π |
| 2 |
(1)∵f(x)=cos(2x-
)+2sin(x-
)sin(x+
)
=
sin2x+
sin2x+(sinx-cosx)(sinx+cosx).
=
cos2x+
sin2x+sin2x-cos2x
=
cos2x+
sin2x-cos2x=sin(2x-
)
由2kπ-
≤2x-
≤2kπ+
,k∈Z,得2kπ-
≤2x≤2kπ+
,k∈Z
kπ-
≤x≤kπ+
,k∈Z,∴单调递增区间为:[kπ-
kπ+
],k∈Z
由2x-
=kπ+
,k∈Z,得:x=
+
,k∈Z,
对称轴方程为x=
+
,k∈Z,
(2)∵x∈[-
,
],∴2x-
∈[-
,
],因为f(x)=sin(2x-
)
在区间[-
,
]上单调递增.在区间[
,
]单调递减,所以当x=
,f(x)取最大值l.
又∵f(-
)=-
<f(
)=
,当x=-
时,f(x)取最小值-
所以函数f(x)在区间上的值域为[-
,1].
| π |
| 3 |
| π |
| 4 |
| π |
| 4 |
=
| 1 |
| 2 |
| ||
| 2 |
=
| 1 |
| 2 |
| ||
| 2 |
=
| 1 |
| 2 |
| ||
| 2 |
| π |
| 6 |
由2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| 2π |
| 3 |
kπ-
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
由2x-
| π |
| 6 |
| π |
| 2 |
| kπ |
| 2 |
| π |
| 3 |
对称轴方程为x=
| kπ |
| 2 |
| π |
| 3 |
(2)∵x∈[-
| π |
| 12 |
| π |
| 2 |
| π |
| 6 |
| π |
| 3 |
| 5π |
| 6 |
| π |
| 6 |
在区间[-
| π |
| 12 |
| π |
| 3 |
| π |
| 3 |
| π |
| 2 |
| π |
| 3 |
又∵f(-
| π |
| 12 |
| ||
| 2 |
| π |
| 2 |
| 1 |
| 2 |
| π |
| 12 |
| ||
| 2 |
所以函数f(x)在区间上的值域为[-
| ||
| 2 |
练习册系列答案
相关题目
已知函数f(x)=
,则关于x的方程f2(x)+bf(x)+c=0有5个不同实数解的充要条件是( )
|
| A、b<-2且c>0 |
| B、b>-2且c<0 |
| C、b<-2且c=0 |
| D、b≥-2且c=0 |