题目内容

已知函数f(x)=
1
a
-
1
x
(a>0, x>0)

(Ⅰ)判断函数f(x)的单调性并用函数单调性定义加以证明;
(Ⅱ)若f(x)在[
1
2
,2]
上的值域是[
1
2
,2]
,求a的值;
(Ⅲ)当m,n∈(0,+∞),若f(x)在[m,n]上的值域是[m,n](m<n),求实数a的取值范围.
分析:(1)定义法证明函数的单调性;
(2)f(x)在[
1
2
,2]
上单调递增,值域是[
1
2
,2]
,则f(
1
2
)=
1
2
,f(2)=2

(3)f(x)在[m,n]上的值域是[m,n](m<n),
f(m)=m
f(n)=n
1
a
-
1
m
=m
1
a
-
1
n
=n
am2-m+a=0
an2-n+a=0
,方程ax2-x+a=0有两个不等正实数根x1,x2,可得答案.
解答:解:(1)证明:设x2>x1>0,则x2-x1>0,x1x2>0,
f(x2)-f(x1)=(
1
a
-
1
x2
)-(
1
a
-
1
x1
)
=
1
x1
-
1
x2
=
x2-x1
x1x2
>0

∴f(x2)>f(x1),∴f(x)在(0,+∞)上是单调递增的.
(2)∵f(x)在[
1
2
,2]
上单调递增,∴f(
1
2
)=
1
2
,f(2)=2
,易得a=
2
5

(3)依题意得
f(m)=m
f(n)=n
1
a
-
1
m
=m
1
a
-
1
n
=n
am2-m+a=0
an2-n+a=0

又∵0<m<n,∴方程ax2-x+a=0有两个不等正实数根x1,x2
又∵a>0,对称轴x=
1
2a
>0∴
△=1-4a2>0
x1+x2=
1
a
>0
x1x2=1>0
⇒0<a<
1
2

∴实数a的取值范围为(0, 
1
2
)
点评:本题为函数单调性的证明,并利用单调性来解决问题,把方程有两实根转化为二次函数问题是解决问题的关键,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网