题目内容
已知等比数列{an},且a1=2,a2=4.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}为等差数列,且b1=a1,b3=a2,求数列{bn}的前n项和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}为等差数列,且b1=a1,b3=a2,求数列{bn}的前n项和.
(Ⅰ)设等比数列{an},的公比为q,
∴q=
=2
∴an=a1qn-1=2×2n-1=2n
∴数列{an}的通项公式是an=2n
(Ⅱ)由己知得,b1=2,b3=4,设等差数列{bn}的公差为d,
∴d=
=1
∴数列{bn}的前n项和Sn=b1n+
=2n+
=
∴q=
| a2 |
| a1 |
∴an=a1qn-1=2×2n-1=2n
∴数列{an}的通项公式是an=2n
(Ⅱ)由己知得,b1=2,b3=4,设等差数列{bn}的公差为d,
∴d=
| b3-b1 |
| 3-1 |
∴数列{bn}的前n项和Sn=b1n+
| n(n+1)d |
| 2 |
| n(n+1)•1 |
| 2 |
| n2+3n |
| 2 |
练习册系列答案
相关题目