题目内容
(2011•海淀区二模)已知数列{an}满足a1=t,an+1-an+2=0(t∈N*,n∈N*),记数列{an}的前n项和的最大值为f(t),则f(t)=
.
|
|
分析:根据题意可知数列{an}是以t为首项,-2为公差的等差数列,可求其通项公式an=-2n+t+2,前n项和Sn=(-n+t+1)•n=-(n-
)2+
,对n分奇数与偶数讨论可得数列{an}的前n项和的最大值为f(t).
| t+1 |
| 2 |
| (t+1)2 |
| 4 |
解答:解:由题意可知数列{an}是以t为首项,-2为公差的等差数列,
∴an=t+(n-1)×(-2)=-2n+t+2,(t∈N*,n∈N*),设其前n项和为Sn,
则Sn=
=(-n+t+1)•n=-(n-
)2+
,
若t为偶数,则n=
或n=
时,Snmax=
;
若t为奇数,则t+1为偶数,当n=
时,Snmax=
;
∴f(t)=
故答案为:
.
∴an=t+(n-1)×(-2)=-2n+t+2,(t∈N*,n∈N*),设其前n项和为Sn,
则Sn=
| [t+(-2n+t+2)]•n |
| 2 |
| t+1 |
| 2 |
| (t+1)2 |
| 4 |
若t为偶数,则n=
| t |
| 2 |
| t+2 |
| 2 |
| t2+2t |
| 4 |
若t为奇数,则t+1为偶数,当n=
| t+1 |
| 2 |
| (t+1)2 |
| 4 |
∴f(t)=
|
故答案为:
|
点评:本题考查等差关系的确定,着重考查等差数列的求和及综合应用,难点在于对t∈N*,的正确理解与应用(需要分类讨论),属于中档题.
练习册系列答案
相关题目