题目内容

已知函数的图像过坐标原点,且在点处的切线的斜率是
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点,使得是以为直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.

(1);(2)上的最大值为;(3)对任意给定的正实数,曲线上总存在两点,使得是以为直角顶点的直角三角形,且此三角形斜边的中点在y轴上.

解析试题分析:(1)求实数的值,由函数,由图像过坐标原点,得,且根据函数在点处的切线的斜率是,由导数几何意义可得,建立方程组,可确定实数的值,进而可确定函数的解析式;(2)求在区间的最大值,因为,由于是分段函数,可分段求最大值,最后确定最大值,当时,,求导得,,令,可得上的最大值为,当时,.对讨论,确定函数的单调性,即可求得结论;(3)这是探索性命题,可假设曲线上存在两点满足题设要求,则点只能在轴两侧.设的坐标,由此入手能得到对任意给定的正实数,曲线上存在两点使得是以为直角顶点的直角三角形,且此三角形斜边中点在轴上.
试题解析:(1)当时, (1分)
依题意,得,解得.     (3分)
(2)由(1)知,
①当     (4分)
变化时的变化情况如下表:



0





0
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网