题目内容
设f(x)=a(x-5)2+6ln x,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.
(1) a=
(2) f(x)在(0,2),(3,+∞)上为增函数;当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数.f(x)在x=2处取得极大值f(2)=
+6ln 2,在x=3处取得极小值f(3)=2+6ln 3.
【解析】(1)因f(x)=a(x-5)2+6ln x,
故f′(x)=2a(x-5)+
令x=1,得f(1)=16a,f′(1)=6-8a,
所以曲线y=f(x)在点(1,f(1))处的切线方程为y-16a=(6-8a)(x-1),
由点(0,6)在切线上可得6-16a=8a-6,故a=
.
(2)由(1)知,f(x)=
(x-5)2+6ln x(x>0),f′(x)=x-5+
=
?
令f′(x)=0,解得x1=2,x2=3.当0<x<2或x>3时,f′(x)>0,
故f(x)在(0,2),(3,+∞)上为增函数;
当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数.
由此可知f(x)在x=2处取得极大值f(2)=
+6ln 2,在x=3处取得极小值f(3)=2+6ln 3.
练习册系列答案
相关题目