题目内容
已知函数f(x)=|x+1|+|x+2|+…+|x+2011|+|x-1|+|x-2|+…+|x-2011|(x∈R),且f(a2-3a+2)=f(a-1),则满足条件的所有整数a的和是______.
∵函数f(x)=|x+1|+|x+2|+…+|x+2011|+|x-1|+|x-2|+…+|x-2011|(x∈R),
∴f(-x)=|-x+1|+|-x+2|+…+|-x+2011|+|-x-1|+|-x-2|+…+|-x-2011|
=|x+1|+|x+2|+…+|x+2011|+|x-1|+|x-2|+…+|x-2011|=f(x)
即函数f(x)为偶函数
若f(a2-3a+2)=f(a-1),
则a2-3a+2=a-1,或a2-3a+2=-(a-1)
即a2-4a+3=0,或a2-2a+1=0
解得a=1,或a=3
又∵f(0)=f(1)=f(-1)
∴当a=2时,也满足要求
故满足条件的所有整数a的和是1+2+3=6
故答案为6
∴f(-x)=|-x+1|+|-x+2|+…+|-x+2011|+|-x-1|+|-x-2|+…+|-x-2011|
=|x+1|+|x+2|+…+|x+2011|+|x-1|+|x-2|+…+|x-2011|=f(x)
即函数f(x)为偶函数
若f(a2-3a+2)=f(a-1),
则a2-3a+2=a-1,或a2-3a+2=-(a-1)
即a2-4a+3=0,或a2-2a+1=0
解得a=1,或a=3
又∵f(0)=f(1)=f(-1)
∴当a=2时,也满足要求
故满足条件的所有整数a的和是1+2+3=6
故答案为6
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|