题目内容
椭圆| x2 |
| a2 |
| y2 |
| b2 |
(1)求
| 1 |
| a2 |
| 1 |
| b2 |
(2)若椭圆离心率在[
| 1 | ||
|
| 1 | ||
|
分析:(1)联立方程组
得(a2+b2)x2-2a2x+a2(1-b2)=0,设P(x1y1)、Q(x2y2),由OP⊥OQ,知x1x2+y1y2=0,由y1=1-x1y2=1-x2,知2x1x2-(x1+x2)+1=0,由此能导出
+
=2.
(2)由e=
,知e2=
=
即b2=a2-a2e2,由
+
=2,知a2=
(1+
)由此能求出椭圆长轴的取值范围.
|
| 1 |
| a2 |
| 1 |
| b2 |
(2)由e=
| c |
| a |
| c2 |
| a2 |
| a2-b2 |
| a2 |
| 1 |
| a2 |
| 1 |
| a2-a2e2 |
| 1 |
| 2 |
| 1 |
| 1-e2 |
解答:解:(1)联立方程组
得(a2+b2)x2-2a2x+a2(1-b2)=0
设P(x1y1)、Q(x2y2),
∵OP⊥OQ∴
•
=-1,即x1x2+y1y2=0
∵y1=1-x1y2=1-x2
∴x1x2+(1-x1)(1-x2)=0,即2x1x2-(x1+x2)+1=0
将x1+x2=
,x1x2=
代入上式得:2•
-
+1=0
∴a2+b2=2a2b2故
+
=2
(2)∵e=
,∴e2=
=
即b2=a2-a2e2
由(1)知
+
=2,∴a2=
(1+
)
∵
≤e≤
,∴
≤e2≤
,
≤1-e2≤
,
∴
≤
≤2,∴
≤a2≤
又∵a>0,∴
≤a≤
故椭圆长轴的取值范围是[
,
].
|
设P(x1y1)、Q(x2y2),
∵OP⊥OQ∴
| y1 |
| x1 |
| y2 |
| x2 |
∵y1=1-x1y2=1-x2
∴x1x2+(1-x1)(1-x2)=0,即2x1x2-(x1+x2)+1=0
将x1+x2=
| 2a2 |
| a2+b2 |
| a2(1-b2) |
| a2+b2 |
| a2(1-b2) |
| a2+b2 |
| 2a2 |
| a2+b2 |
∴a2+b2=2a2b2故
| 1 |
| a2 |
| 1 |
| b2 |
(2)∵e=
| c |
| a |
| c2 |
| a2 |
| a2-b2 |
| a2 |
由(1)知
| 1 |
| a2 |
| 1 |
| a2-a2e2 |
| 1 |
| 2 |
| 1 |
| 1-e2 |
∵
| 1 | ||
|
| 1 | ||
|
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
∴
| 3 |
| 2 |
| 1 |
| 1-e2 |
| 5 |
| 4 |
| 3 |
| 2 |
又∵a>0,∴
| ||
| 2 |
| ||
| 2 |
故椭圆长轴的取值范围是[
| 5 |
| 6 |
点评:本题考查椭圆和直线 的位置关系及其应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目