题目内容
已知等差数列{an}中,a2+a14=16,a4=2,则S11的值为
- A.15
- B.33
- C.55
- D.99
C
分析:由等差数列{an}中,a2+a14=16=2a8,可得a8 的值,根据a8+a4=2a6,求出a6 的值,再根据S11=
运算求得结果.
解答:由等差数列{an}中,a2+a14=16=2a8,可得a8=8,根据a8+a4=2a6,求出a6=5,
故 S11=
=11•a6=55,
故选C.
点评:本题考查等差数列的定义和性质,通项公式,求出a6的值,是解题的关键.
分析:由等差数列{an}中,a2+a14=16=2a8,可得a8 的值,根据a8+a4=2a6,求出a6 的值,再根据S11=
解答:由等差数列{an}中,a2+a14=16=2a8,可得a8=8,根据a8+a4=2a6,求出a6=5,
故 S11=
故选C.
点评:本题考查等差数列的定义和性质,通项公式,求出a6的值,是解题的关键.
练习册系列答案
相关题目