题目内容
设数列的前项和为,若,则通项 .
【解析】略
在等差数列中,若任意两个不等的正整数,都有,,设数列的前项和为,若,则 (结果用表示)。
设数列的前项和为,若,则
对于数列,如果存在一个正整数,使得对任意的都有成立,那么就把这样一类数列称作周期为的周期数列,的最小正值称作数列的最小正周期,以下简称周期。例如当时,是周期为的周期数列;当时,是周期为的周期数列。设数列满足.
(1)若数列是周期为的周期数列,则常数的值是 ;
(2)设数列的前项和为,若,则 .
(本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
(文)已知数列中,
(1)求证数列不是等比数列,并求该数列的通项公式;
(2)求数列的前项和;
(3)设数列的前项和为,若对任意恒成立,求的最小值.
(本题满分16分)
设数列的前项和为,若对任意,都有.
⑴求数列的首项;
⑵求证:数列是等比数列,并求数列的通项公式;
⑶数列满足,问是否存在,使得恒成立?如果存在,求出 的值,如果不存在,说明理由.