题目内容
如图,平面内的定点F到定直线l的距离为2,定点E满足:|![]()
(1)建立适当的直角坐标系,求动点P的轨迹方程;
(2)若经过点E的直线l1与点P的轨迹交于相异两点A、B,令∠AFB=θ,当
≤θ<π时,求直线l1的斜率k的取值范围.
解:(1)以FG的中点O为原点,以EF所在直线为y轴,建立平面直角坐标系xOy,
设点P(x,y),则F(0,1),E(0,3),l:y=-1.
∵
=
,
∥
,∴Q(x,-1),M(
,0).
∵
·
=0,∴(-
)×x+(-y)×(-2)=0,
即所求点P轨迹方程为x2=4y.
![]()
(2)设点A(x1,y1),B(x2,y2)(x1≠x2),设AF的斜率为k1,BF的斜率为k2,直线l1的方程为y=kx+3,由
得x2-4kx-12=0.∴x1+x2=4k,x1x2=-12
∴y1y2=
y1+y2=k(x1+x2)+6=4k2+6.
∵
=(x1,y1-1),
=(x2,y2-1),
∴
·
=x1x2+(y1-1)(y2-1)=x1x2+y1y2-(y1+y2)+1=-12+9-4k2-6+1=-4k2-8.
又∵|
|·|
|=(y1+1)(y2+1)=y1y2+(y1+y2)+1=9+4k2+6+1=4k2+16.
Cosθ=
=
由于
≤θ<π
∴-1<Cosθ≤-
,即-1<-
.
∴
∴k2≥2
.解得k≥
或k≤-
.
∴直线l1斜率k的取值范围是{k|k≥
或k≤-
}.
练习册系列答案
相关题目