题目内容

在△ABC中,角A,B,C所对的边分别为a,b,c,设
m
=(1,1),
n
=(-cosA,sinA),记f(A)=
m
n

(1)求f(A)的取值范围;
(2)若
m
n
的夹角为
π
4
,C=
π
3
,c=
6
,求b的值.
分析:(1)由条件利用两个向量的数量及公示求得f(A)=
m
n
=
2
sin(A-
π
4
).再根据A的范围,结合正弦函数的定义域和值域求得f(A)的取值范围.
(2)根据
m
n
的夹角为
π
4
,求得A的值,再根据C=
π
3
,求得B的值,再利用正弦定理
c
sinC
=
b
sinB
求得b的值.
解答:解:(1)∵
m
=(1,1),
n
=(-cosA,sinA),
∴f(A)=
m
n
=-cosA+sinA=
2
sin(A-
π
4
).
∵0<A<π,∴-
π
4
<A-
π
4
4
,∴-
2
2
<sin(A-
π
4
)≤1,
则f(A)的取值范围是(-1,
2
].
(2)∵
m
n
的夹角为
π
4
m
=(1,1),
n
=(-cosA,sinA),
m
n
=|
m
|×|
n
|×cos
π
4
=
2
2
,即-cosA+sinA=
2
sin(A-
π
4
)=
2
2

∴sin(A-
π
4
)=
1
2
,∴A-
π
4
=
π
6
,或
6
(舍去),∴A=
12

∵C=
π
3
,∴B=
π
4
,∵sinB=
2
2
,sinC=
3
2
,c=
6

∴由正弦定理
c
sinC
=
b
sinB
得:b=
csinB
sinC
=
6
×
2
2
3
2
=2.
点评:本题主要考查两个向量的数量积的运算,正弦函数的定义域和值域,正弦定理的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网