题目内容

5.设f(x)为定义在R上的奇函数,且是周期为4的周期函数,f(1)=1,则f(-1)+f(8)=(  )
A.-2B.-1C.0D.1

分析 根据函数的周期性得出f(x+4)=f(x).奇偶性得出f(-x)=-f(x),化简得出f(-1)+f(8)=-f(1)+f(0),即可求解.

解答 解:∵f(x)为定义在R上的奇函数,
∴f(0)=0,f(-x)=-f(x)
∵f(x)是周期为4的周期函数,
∴f(x+4)=f(x).
∵f(1)=1,
∴f(-1)+f(8)=-f(1)+f(0)=-1
故选:B

点评 本题考查了函数的性质,运用求解函数值,难度不大,属于容易题,关键是掌握好性质的定义式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网