题目内容
已知点Pn(an,bn)满足an+1=anbn+1,| bn+1 |
| bn |
| 1 | ||
1-4
|
(Ⅰ)求过P1,P2两点的直线l的方程,并证明点 Pn在直线l上;
(Ⅱ)求使不等式(1+a1)2(1+a2)2•…•(1+an)2≥
| λ |
| b2b3•…•bnbn+1 |
分析:(Ⅰ)b2=
=
=
,a2=a1b2=1×
=
.P2(
,
).过P1,P2的直线方程为2x+y-1=0,然后用数学归纳法证明点Pn在直线l:2x+y-1=0上.
(Ⅱ)由an+1=an•bn+1=an(1-2an+1),知
-
=2.所以{
}是以
=1为首项,2为公差的等差数列.由此能导出λ的最大值是
.
| b1 | ||
1-4
|
| -1 |
| 1-4 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
(Ⅱ)由an+1=an•bn+1=an(1-2an+1),知
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| a1 |
| 4 |
| 3 |
解答:解:(Ⅰ)b2=
=
=
,a2=a1b2=1×
=
.∴P2(
,
).
过P1,P2的直线方程为y+1=
(x-1),即2x+y-1=0.(2分)
下面用数学归纳法证明点Pn在直线l:2x+y-1=0上,即2an+bn=1,n∈N*成立.
1)当n=12时,2a1+b1=13成立;
4)假设n=k(k∈N*)5时,2ak+bk=16成立,则2ak+1+bk+1=2akbk+1+bk+1=(2ak+1)bk+1=(2ak+1)
=
=1.
即n=k+1时,2ak+1+bk+1=1也成立.
根据1),2)对所有n∈N*点Pn在直线l:2x+y-1=0上.(6分)
(Ⅱ)an+1=an•bn+1=an(1-2an+1),∴an+1=an-2an+1an∴
-
=2.
∴{
}是以
=1为首项,2为公差的等差数列.
∴
=1+(n-1)×2=2n-1, ∴ an=
.∴bn=1-2an=
.(10分)
∴b2b3…bnbn+1=
×
×…×
×
=
.
∴不等式(1+a1)2(1+a2)2…(1+ an)2≥
?[(1+1)(1+
)•••(1+
)]2≥λ(2n+1)
?
≥λ
设f(n)=
,
∵
=
=
=
>1
∴f(n)的最小值是f(1)=
.
∴
≥λ.即λ的最大值是
.(14分)
| b1 | ||
1-4
|
| -1 |
| 1-4 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
过P1,P2的直线方程为y+1=
| ||
|
下面用数学归纳法证明点Pn在直线l:2x+y-1=0上,即2an+bn=1,n∈N*成立.
1)当n=12时,2a1+b1=13成立;
4)假设n=k(k∈N*)5时,2ak+bk=16成立,则2ak+1+bk+1=2akbk+1+bk+1=(2ak+1)bk+1=(2ak+1)
| bk | ||
1-4
|
| bk | ||
1-2
|
即n=k+1时,2ak+1+bk+1=1也成立.
根据1),2)对所有n∈N*点Pn在直线l:2x+y-1=0上.(6分)
(Ⅱ)an+1=an•bn+1=an(1-2an+1),∴an+1=an-2an+1an∴
| 1 |
| an+1 |
| 1 |
| an |
∴{
| 1 |
| an |
| 1 |
| a1 |
∴
| 1 |
| an |
| 1 |
| 2n-1 |
| 2n-3 |
| 2n-1 |
∴b2b3…bnbn+1=
| 1 |
| 3 |
| 3 |
| 5 |
| 2n-3 |
| 2n-1 |
| 1 |
| 2 |
| 2n-1 |
| 2n+1 |
| 1 |
| 2n+1 |
∴不等式(1+a1)2(1+a2)2…(1+ an)2≥
| λ |
| b2b3… bnbn+1 |
| 1 |
| 3 |
| 1 |
| 2n-1 |
?
[(1+1)(1+
| ||||
| 2n+1 |
设f(n)=
[(1+1)(1+
| ||||
| 2n+1 |
∵
| f(n+1) |
| f(n) |
(1+
| ||
| 2n+3 |
| (2n+2)2 |
| (2n+3)(2n+1) |
| 4n2+8n+4 |
| 4n2+8n+3 |
∴f(n)的最小值是f(1)=
| 4 |
| 3 |
∴
| 4 |
| 3 |
| 4 |
| 3 |
点评:本题考查不等式的性质和应用,解题时要认真审题,仔细解答,注意公式的灵活运用.
练习册系列答案
相关题目