题目内容

已知点Pn(an,bn)满足an+1=anbn+1
bn+1
bn
=
1
1-4
a
2
n
(n∈N*)
,且P1点的坐标是(1,-1).
(Ⅰ)求过P1,P2两点的直线l的方程,并证明点 Pn在直线l上;
(Ⅱ)求使不等式(1+a1)2(1+a2)2•…•(1+an)2
λ
b2b3•…•bnbn+1
对所有n∈N*成立的最大实数λ.
分析:(Ⅰ)b2=
b1
1-4
a
2
1
=
-1
1-4
=
1
3
a2=a1b2=1×
1
3
=
1
3
P2(
1
3
1
3
)
.过P1,P2的直线方程为2x+y-1=0,然后用数学归纳法证明点Pn在直线l:2x+y-1=0上.
(Ⅱ)由an+1=an•bn+1=an(1-2an+1),知
1
an+1
-
1
an
=2
.所以{
1
an
}
是以
1
a1
=1
为首项,2为公差的等差数列.由此能导出λ的最大值是
4
3
解答:解:(Ⅰ)b2=
b1
1-4
a
2
1
=
-1
1-4
=
1
3
a2=a1b2=1×
1
3
=
1
3
.∴P2(
1
3
1
3
)

过P1,P2的直线方程为y+1=
1
3
+1
1
3
-1
(x-1)
,即2x+y-1=0.(2分)
下面用数学归纳法证明点Pn在直线l:2x+y-1=0上,即2an+bn=1,n∈N*成立.
1)当n=12时,2a1+b1=13成立;
4)假设n=k(k∈N*)5时,2ak+bk=16成立,则2ak+1+bk+1=2akbk+1+bk+1=(2ak+1)bk+1=(2ak+1)
bk
1-4
a
2
k
=
bk
1-2
a
 
k
=1

即n=k+1时,2ak+1+bk+1=1也成立.
根据1),2)对所有n∈N*点Pn在直线l:2x+y-1=0上.(6分)

(Ⅱ)an+1=an•bn+1=an(1-2an+1),∴an+1=an-2an+1an
1
an+1
-
1
an
=2

{
1
an
}
是以
1
a1
=1
为首项,2为公差的等差数列.
1
an
=1+(n-1)×2=2n-1,  ∴ an=
1
2n-1
.∴bn=1-2an=
2n-3
2n-1
.(10分)
∴b2b3…bnbn+1=
1
3
×
3
5
×…×
2n-3
2n-1
1
2
× 
2n-1
2n+1
=
1
2n+1

∴不等式(1+a1)2(1+a2)2(1+ an)2
λ
b2b3…  bnbn+1
?[(1+1)(1+
1
3
)••
(1+
1
2n-1
)]2≥λ(2n+1)

?
[(1+1)(1+
1
3
)…(1+
1
2n-1
)] 
2
2n+1
≥λ
设f(n)=
[(1+1)(1+
1
3
)…(1+
1
2n-1
)] 
2
2n+1

f(n+1)
f(n)
=
(1+
1
2n+1
)
2
(2n+1)
2n+3
=
(2n+2)2
(2n+3)(2n+1)
=
4n2+8n+4
4n2+8n+3
>1

∴f(n)的最小值是f(1)=
4
3

4
3
≥λ
.即λ的最大值是
4
3
.(14分)
点评:本题考查不等式的性质和应用,解题时要认真审题,仔细解答,注意公式的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网