题目内容
用数学归纳法证明等式:n∈N,n≥1,1-| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
分析:我们用数学归纳法进行证明,先证明当n=1时,左=1-
=
=右,等式成立.
再假设当n=k时等式成立,,进而证明当n=k+1时,等式也成立;
| 1 |
| 2 |
| 1 |
| 2 |
再假设当n=k时等式成立,,进而证明当n=k+1时,等式也成立;
解答:证明:(1)当n=1时,左=1-
=
=右,等式成立.
(2)假设当n=k时等式成立,
即1-
+
-
+…+
-
=
+
+…+
则1-
+
-
+…+
-
+(
-
)=
+
+…+
+(
-
)=
+…+
+
+
∴当n=k+1时,等式也成立.
综合(1)(2),等式对所有正整数都成立.
| 1 |
| 2 |
| 1 |
| 2 |
(2)假设当n=k时等式成立,
即1-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2k-1 |
| 1 |
| 2k |
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| 2k |
则1-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2k-1 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
| 1 |
| k+2 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
综合(1)(2),等式对所有正整数都成立.
点评:数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳) 在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.
练习册系列答案
相关题目