题目内容
已知正项数列{an}满足a1=
,且an+1=
(1)证明数列{
}为等差数列,并求{an}的通项公式;
(2)求证:
+
+
+…+
<1.
| 1 |
| 2 |
| an |
| 1+an |
(1)证明数列{
| 1 |
| an |
(2)求证:
| a1 |
| 2 |
| a2 |
| 3 |
| a3 |
| 4 |
| an |
| n+1 |
分析:(1)由已知得an+1an=an-an+1,两边同除以an+1an得出
-
=1,判断出{
}为等差数列,先求出{
} 的通项公式,再求出{an}的通项公式.
(2)由(1)应得出
=
<
-
,放缩裂项后,对不等式左边化简整理再与1比较,进行证明.
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| an |
(2)由(1)应得出
| an |
| n+1 |
| 1 |
| (n+1)2 |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(1)由已知得an+1an=an-an+1an
两边同除以an+1an得出
-
=1,
∴数列{
}为公差为1的等差数列,且首项为
=2
根据等差数列的通项公式可得
(2)证明:∵
=
<
-
∴
两边同除以an+1an得出
| 1 |
| an+1 |
| 1 |
| an |
∴数列{
| 1 |
| an |
| 1 |
| a1 |
根据等差数列的通项公式可得
|
(2)证明:∵
| an |
| n+1 |
| 1 |
| (n+1)2 |
| 1 |
| n |
| 1 |
| n+1 |
∴
|
点评:本题考查等差数列的判定,通项公式求解,考查变形构造、计算能力,以及不等式的证明.属于中档题.
练习册系列答案
相关题目