题目内容
(本小题满分12分)
已知如图(1),正三角形ABC的边长为2a,CD是AB边上的高,E、F分别是AC和BC边上的点,且满足
,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2). ![]()
(Ⅰ) 求二面角B-AC-D的大小;
(Ⅱ) 若异面直线AB与DE所成角的余弦值为
,求k的值.
(1)
. (2) k=![]()
解析试题分析:解:(Ⅰ) 过D点作DG⊥AC于G,连结BG,![]()
∵ AD⊥CD, BD⊥CD,
∴ ∠ADB是二面角A-CD-B的平面角.
∴ ∠ADB=
, 即BD⊥AD.
∴ BD⊥平面ADC. ∴ BD⊥AC.
∴ AC⊥平面BGD. ∴ BG⊥AC .
∴ ∠BGD是二面角B-AC-D的平面角.
在ADC中,AD=a, DC=
, AC=2a,
∴
.
在Rt△BDG中,
.
∴
.
即二面角B-AC-D的大小为
.
(Ⅱ) ∵ AB∥EF, ∴ ∠DEF(或其补角)是异面直线AB与DE所成的角.
∵
,∴
.
又DC=
,
,
∴![]()
![]()
∴
.
∴
. 解得 k=
.
考点:异面直线所成的角,以及二面角度求解
点评:解决该试题的关键是能利用定义求作角,结合三角形来求解得到结论,属于基础题。
练习册系列答案
相关题目