ÌâÄ¿ÄÚÈÝ
3£®Éè$\overrightarrow a£¬\overrightarrow b£¬\overrightarrow c$Êǵ¥Î»ÏòÁ¿£¬ÇÒ$\overrightarrow a•\overrightarrow b=0$£¬Ôò$£¨{\overrightarrow a-\overrightarrow c}£©•£¨{\overrightarrow b-\overrightarrow c}£©$µÄ×îСֵΪ1-$\sqrt{2}$£®·ÖÎö ²»·ÁÉè$\overrightarrow{a}$=£¨1£¬0£©£¬$\overrightarrow{b}$=£¨0£¬1£©£¬$\overrightarrow{c}$=£¨x£¬y£©£¬Âú×ãx2+y2=1£¬Ôò£¨$\overrightarrow{a}$-$\overrightarrow{c}$£©•£¨$\overrightarrow{b}$-$\overrightarrow{c}$£©=1-£¨x+y£©£¬È»ºóÀûÓûù±¾²»µÈʽ¿ÉÇó³ö×îСֵ£®
½â´ð ½â£º²»·ÁÉè$\overrightarrow{a}$=£¨1£¬0£©£¬$\overrightarrow{b}$=£¨0£¬1£©£¬$\overrightarrow{c}$=£¨x£¬y£©£¬
Âú×ãx2+y2=1£¬
¡ß£¨x+y£©2¡Ü2£¨x2+y2£©=2£¬
¡àx+y¡Ü$\sqrt{2}$£¬
Ôò-£¨x+y£©¡Ý-$\sqrt{2}$£¬
$\overrightarrow{a}$-$\overrightarrow{c}$=£¨1-x£¬-y£©£¬$\overrightarrow{b}$-$\overrightarrow{c}$=£¨-x£¬1-y£©£¬
¡à£¨$\overrightarrow{a}$-$\overrightarrow{c}$£©•£¨$\overrightarrow{b}$-$\overrightarrow{c}$£©=-x+x2-y+y2
=1-£¨x+y£©¡Ý1-$\sqrt{2}$£®
¼´$£¨{\overrightarrow a-\overrightarrow c}£©•£¨{\overrightarrow b-\overrightarrow c}£©$µÄ×îСֵΪ1-$\sqrt{2}$£®
¹Ê´ð°¸Îª£º1-$\sqrt{2}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㣬ÒÔ¼°¹¹Ôì·¨µÄÔËÓúͻù±¾²»µÈʽµÄ¿¼²é£¬ÊôÓÚÖеµÌ⣮
| A£® | 35 | B£® | $\frac{{3}^{5}}{7}$ | C£® | $\frac{7}{{3}^{5}}$ | D£® | -7 |
| A£® | $\frac{{\sqrt{3}}}{3}$ | B£® | 1 | C£® | $\sqrt{3}$ | D£® | $\frac{{3\sqrt{3}}}{2}$ |
| ·Ö×é | 147.5¡«155.5 | 155.5¡«163.5 | 163.5¡«171.5 | 171.5¡«179.5 |
| ƵÊý | 6 | 21 | m | |
| ƵÂÊ | a | 0.1 |
£¨2£©»³öƵÂÊ·Ö²¼Ö±·½Í¼£»
£¨3£©¹À¼ÆÕâ×éÊý¾ÝµÄÖÚÊý¡¢Æ½¾ùÊýºÍÖÐλÊý£®
| A£® | 72 | B£® | 80 | C£® | 90 | D£® | 82 |
£¨I£©¸ù¾ÝÒÔÉÏÊý¾ÝÍê³ÉÒÔÏÂ2X2ÁÐÁª±í£º
| »á¶íÓï | ²»»á¶íÓï | ×Ü¼Æ | |
| ÄÐ | 10 | 6 | 16 |
| Å® | 6 | 8 | 14 |
| ×Ü¼Æ | 16 | 14 | 30 |
²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$ÆäÖÐn=a+b+c+d
²Î¿¼Êý¾Ý£º
| P£¨K2¡Ýk0£© | 0.40 | 0.25 | 0.10 | 0.010 |
| k0 | 0.708 | 1.323 | 2.706 | 6.635 |