题目内容
下面四个命题:
①若x=
,则x+y的最小值为0.
②-
≤
≤
(x∈R).
③若x,y∈R+,则
≥
+
.
④
+
+…+
<
. 其中正确的命题是______.
A、①②B、②③C、②④D、③④
①若x=
| 1-y2 |
②-
| 1 |
| 2 |
| x |
| x2+1 |
| 1 |
| 2 |
③若x,y∈R+,则
| x+y |
| 1+x+y |
| x |
| 1+x |
| y |
| 1+y |
④
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| n(n+2) |
| 3 |
| 4 |
A、①②B、②③C、②④D、③④
对于①,若x=
,则x=0,y=-1时,x+y=-1,故①不成立.
对于②,由于x=0,
=0;x>0 时,
=
≤
;
x<0时,
=-
≥-
,故有 -
≤
≤
,故②正确.
对于③,令x=2,y=3,可得
=
,而
+
=
+
=
,故③不正确.
对于④,
+
+…+
=
(1-
+
-
+
-
+…+
-
)=
(1+
-
-
)
<
(1+
)=
,故④正确.
故选:C.
| 1-y2 |
对于②,由于x=0,
| x |
| x2+1 |
| x |
| x2+1 |
| 1 | ||
x+
|
| 1 |
| 2 |
x<0时,
| 1 | ||
x+
|
| 1 | ||
-x+
|
| 1 |
| 2 |
| 1 |
| 2 |
| x |
| x2+1 |
| 1 |
| 2 |
对于③,令x=2,y=3,可得
| x+y |
| 1+x+y |
| 5 |
| 6 |
| x |
| 1+x |
| y |
| 1+y |
| 2 |
| 3 |
| 3 |
| 4 |
| 17 |
| 12 |
对于④,
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
<
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 4 |
故选:C.
练习册系列答案
相关题目