题目内容

(本小题满分12分)已知点是平面上一动点,且满足。(Ⅰ)求点的轨迹C对应的方程;(Ⅱ)已知点在曲线C上,过点A作曲线C的两条弦,且 的斜率试推断:动直线是否过定点?证明你的结论。

(Ⅰ)    (Ⅱ) (-1,-2)


解析:

(1)设代入 化简得…3分

  (2)将代入

  法一:两点不可能关于轴对称,的斜率必存在

   设直线的方程  由

   …………6分

  且

                …………8分

代入化简…………10分

代入,过定点(-1.-2)

 将,过定点(1,2)即为A点,舍去 直线过定点为(-1,-2)…………12分

法二:设

同理,由已知得…8分

设直线的方程为代入

  …………10分直线的方程为

直线过定点(-1,-2)…………12分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网