题目内容
函数在区间上的零点个数为 .
已知椭圆的左,右焦点分别为,过的直线交椭圆于两点,若的最大值为10,则的值为 ( )
A.3 B.2 C.1 D.
已知点到点和的距离相等,则的最小值为 .
集合各有两个元素,中有一个元素,若集合同时满足:(1),(2),则满足条件的个数为( )
A. B. C. D.
若、是两个相交平面,则在下列命题中,真命题的序号为( )
①若直线,则在平面内一定不存在与直线平行的直线.
②若直线,则在平面内一定存在无数条直线与直线垂直.
③若直线,则在平面内不一定存在与直线垂直的直线.
④若直线,则在平面内一定存在与直线垂直的直线.
A.①③ B.②③ C.②④ D.①④
椭圆过右焦点有n条弦的长度成等差数列,最小弦长为数列的首项,最大弦长为,若公差为的取值集合为( )
A、{4,5,6,7} B、{4,5,6}
C、{3,4,5,6} D、{3,4,5,6,7}
( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
设,为常数
(1)若为奇函数,求;
(2)判断在上的单调性,并用单调性的定义予以证明.
(3)在(1)的条件下,不等式对恒成立,求的取值范围.
一个直三棱柱被一个平面截后剩余部分的三视图如图,则截去部分的体积与剩余部分的体积之比为( )