题目内容
已知函数f(x)=|x-a|,g(x)=ax,(a∈R).
(1)若函数y=f(x)是偶函数,求出符合条件的实数a的值;
(2)若方程f(x)=g(x)有两解,求出实数a的取值范围;
(3)若a>0,记F(x)=g(x)•f(x),试求函数y=F(x)在区间[1,2]上的最大值.
(1)若函数y=f(x)是偶函数,求出符合条件的实数a的值;
(2)若方程f(x)=g(x)有两解,求出实数a的取值范围;
(3)若a>0,记F(x)=g(x)•f(x),试求函数y=F(x)在区间[1,2]上的最大值.
(1)∵函数f(x)=|x-a|为偶函数,
∴对任意的实数x,f(-x)=f(x)成立
即|-x-a|=|x-a|,
∴x+a=x-a恒成立,或x+a=a-x恒成立
∵x+a=a-x不能恒成立
∴x+a=x-a恒成立,得a=0.…(4分)
(2)当a>0时,|x-a|-ax=0有两解,
等价于方程(x-a)2-a2x2=0在(0,+∞)上有两解,
即(a2-1)x2+2ax-a2=0在(0,+∞)上有两解,…(6分)
令h(x)=(a2-1)x2+2ax-a2,
因为h(0)=-a2<0,所以
,故0<a<1;…(8分)
同理,当a<0时,得到-1<a<0;
当a=0时,f(x)=|x|=0=g(x),显然不合题意,舍去.
综上可知实数a的取值范围是(-1,0)∪(0,1).…(10分)
(3)令F(x)=f(x)•g(x)
①当0<a≤1时,则F(x)=a(x2-ax),
对称轴x=
∈(0,
],函数在[1,2]上是增函数,
所以此时函数y=F(x)的最大值为4a-2a2.
②当1<a≤2时,F(x)=
,对称轴x=
∈(
,1],
所以函数y=F(x)在(1,a]上是减函数,在[a,2]上是增函数,F(1)=a2-a,F(2)=4a-2a2,
1)若F(1)<F(2),即1<a<
,此时函数y=F(x)的最大值为4a-2a2;
2)若F(1)≥F(2),即
≤a≤2,此时函数y=F(x)的最大值为a2-a.
③当2<a≤4时,F(x)=-a(x2-ax)对称轴x=
∈(1,2],
此时F(x)max=F(
)=
,
④当a>4时,对称轴x=
∈(2,+∞),此时F(x)max=F(2)=2a2-4a.
综上可知,函数y=F(x)在区间[1,2]上的最大值[F(x)]max=
…(16分)
∴对任意的实数x,f(-x)=f(x)成立
即|-x-a|=|x-a|,
∴x+a=x-a恒成立,或x+a=a-x恒成立
∵x+a=a-x不能恒成立
∴x+a=x-a恒成立,得a=0.…(4分)
(2)当a>0时,|x-a|-ax=0有两解,
等价于方程(x-a)2-a2x2=0在(0,+∞)上有两解,
即(a2-1)x2+2ax-a2=0在(0,+∞)上有两解,…(6分)
令h(x)=(a2-1)x2+2ax-a2,
因为h(0)=-a2<0,所以
|
同理,当a<0时,得到-1<a<0;
当a=0时,f(x)=|x|=0=g(x),显然不合题意,舍去.
综上可知实数a的取值范围是(-1,0)∪(0,1).…(10分)
(3)令F(x)=f(x)•g(x)
①当0<a≤1时,则F(x)=a(x2-ax),
对称轴x=
| a |
| 2 |
| 1 |
| 2 |
所以此时函数y=F(x)的最大值为4a-2a2.
②当1<a≤2时,F(x)=
|
| a |
| 2 |
| 1 |
| 2 |
所以函数y=F(x)在(1,a]上是减函数,在[a,2]上是增函数,F(1)=a2-a,F(2)=4a-2a2,
1)若F(1)<F(2),即1<a<
| 5 |
| 3 |
2)若F(1)≥F(2),即
| 5 |
| 3 |
③当2<a≤4时,F(x)=-a(x2-ax)对称轴x=
| a |
| 2 |
此时F(x)max=F(
| a |
| 2 |
| a3 |
| 4 |
④当a>4时,对称轴x=
| a |
| 2 |
综上可知,函数y=F(x)在区间[1,2]上的最大值[F(x)]max=
|
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|