题目内容
已知数列{an}的前n项和为Sn,且Sn=n(n+1)(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:an=
+
+
+…+
,求数列{bn}的通项公式;
(Ⅲ)令cn=
(n∈N*),求数列{cn}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:an=
| b1 |
| 3+1 |
| b2 |
| 32+1 |
| b3 |
| 33+1 |
| bn |
| 3n+1 |
(Ⅲ)令cn=
| anbn |
| 4 |
(Ⅰ)当n=1时,a1=S1=2,
当n≥2时,an=Sn-Sn-1=n(n+1)-(n-1)n=2n,
知a1=2满足该式,
∴数列{an}的通项公式为an=2n.(2分)
(Ⅱ)∵an=
+
+
+…+
(n≥1)①
∴an+1=
+
+
+…+
+
②(4分)
②-①得:
=an+1-an=2,
bn+1=2(3n+1+1),
故bn=2(3n+1)(n∈N*).(6分)
(Ⅲ)cn=
=n(3n+1)=n•3n+n,
∴Tn=c1+c2+c3+…+cn=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n)(8分)
令Hn=1×3+2×32+3×33+…+n×3n,①
则3Hn=1×32+2×33+3×34+…+n×3n+1②
①-②得:-2Hn=3+32+33+…+3n-n×3n+1
=
-n×3n+1
∴Hn=
,…(10分)
∴数列{cn}的前n项和Tn=
+
…(12分)
当n≥2时,an=Sn-Sn-1=n(n+1)-(n-1)n=2n,
知a1=2满足该式,
∴数列{an}的通项公式为an=2n.(2分)
(Ⅱ)∵an=
| b1 |
| 3+1 |
| b2 |
| 32+1 |
| b3 |
| 33+1 |
| bn |
| 3n+1 |
∴an+1=
| b1 |
| 3+1 |
| b2 |
| 32+1 |
| b3 |
| 33+1 |
| bn |
| 3n+1 |
| bn+1 |
| 3n+1+1 |
②-①得:
| bn+1 |
| 3n+1+1 |
bn+1=2(3n+1+1),
故bn=2(3n+1)(n∈N*).(6分)
(Ⅲ)cn=
| anbn |
| 4 |
∴Tn=c1+c2+c3+…+cn=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n)(8分)
令Hn=1×3+2×32+3×33+…+n×3n,①
则3Hn=1×32+2×33+3×34+…+n×3n+1②
①-②得:-2Hn=3+32+33+…+3n-n×3n+1
=
| 3(1-3n) |
| 1-3 |
∴Hn=
| (2n-1)×3n+1+3 |
| 4 |
∴数列{cn}的前n项和Tn=
| (2n-1)×3n+1+3 |
| 4 |
| n(n+1) |
| 2 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |