题目内容
已知等差数列{an}的公差大于0,且a3>a5是方程x2-14x+45=0的两根,数列{bn}的前n项的和为Sn,且Sn=1-
bn (n∈N*).
(1)求数列{an},{bn}的通项公式;
(2)记cn=anbn,求证:cn+1≤cn.
| 1 | 2 |
(1)求数列{an},{bn}的通项公式;
(2)记cn=anbn,求证:cn+1≤cn.
分析:(1)通过求解一元二次方程求得a3,a5,则等差数列{an}的公差可求,直接由an=am+(n-m)d写出通项公式;根据给出的数列{bn}的递推式,先取n=1求出b1,取n=n-1得另一递推式,两式作差整理后可说明数列{bn}是等比数列,且求出公比,则{bn}的通项公式可求;
(2)把(1)中求出的数列{an},{bn}的通项公式代入cn=anbn,再求出cn+1,利用作差法即可求证不等式.
(2)把(1)中求出的数列{an},{bn}的通项公式代入cn=anbn,再求出cn+1,利用作差法即可求证不等式.
解答:(1)解:由x2-14x+45=0得:x1=5,x2=9.
∵a3,a5是方程x2-14x+45=0的两根,且等差数列{an}的公差大于0,
∴a3=5,a5=9,则公差d=
=
=2.
∴an=a3+(n-3)d=5+2(n-3)=2n-1,
由Sn=1-
bn,当n=1时,有b1=S1=1-
b1,∴b1=
.
当n≥2时,有bn=Sn-Sn-1=
(bn-1-bn),
∴3bn=bn-1,∵b1=
≠0,∴
=
(n≥2).
∴数列{bn}是以
为首项,以
为公比的等比数列.
∴bn=b1qn-1=
×(
)n-1=
.
(2)证明:由an=2n-1,bn=
,∴cn=anbn=
,cn+1=
.
则cn+1-cn=
-
=
≤0.
∴cn+1≤cn.
∵a3,a5是方程x2-14x+45=0的两根,且等差数列{an}的公差大于0,
∴a3=5,a5=9,则公差d=
| a5-a3 |
| 5-3 |
| 9-5 |
| 2 |
∴an=a3+(n-3)d=5+2(n-3)=2n-1,
由Sn=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
当n≥2时,有bn=Sn-Sn-1=
| 1 |
| 2 |
∴3bn=bn-1,∵b1=
| 2 |
| 3 |
| bn |
| bn-1 |
| 1 |
| 3 |
∴数列{bn}是以
| 2 |
| 3 |
| 1 |
| 3 |
∴bn=b1qn-1=
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3n |
(2)证明:由an=2n-1,bn=
| 2 |
| 3n |
| 2(2n-1) |
| 3n |
| 2(2n+1) |
| 3n+1 |
则cn+1-cn=
| 2(2n+1) |
| 3n+1 |
| 2(2n-1) |
| 3n |
| 8(1-n) |
| 3n+1 |
∴cn+1≤cn.
点评:本题考查了等差数列的通项公式的求法,考查了利用递推式确定等比关系,训练了利用作差法证明不等式,作差法证明不等式的关键是判断差式的符号,此题是中档题.
练习册系列答案
相关题目