题目内容

在等差数列{an}中,a1=-2013,其前n项和为Sn,若
S12
12
-
S10
10
=2
,则S2013的值等于(  )
分析:设等差数列前n项和为Sn=An2+Bn,根据
Sn
n
=An+B,可知{
Sn
n
}成等差数列,然后求出
S2013
2013
的值,从而可求出S2013的值.
解答:解:设等差数列前n项和为Sn=An2+Bn
Sn
n
=An+B,∴{
Sn
n
}成等差数列,
S12
12
-
S10
10
=2
S1
1
=a1=-2013,
∴{
Sn
n
}是首项为-2013,公差为1的等差数列,
S2013
2013
=-2013+(2013-1)×1=-1,即S2013=-2013.
故选B.
点评:本题主要考查了等差数列的性质,以及构造法的应用,同时考查了转化的思想,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网