题目内容

正方体ABCD﹣A1B1C1D1的棱长为a.求:
(1)二面角A﹣BD﹣A1的正切值;
(2)AA1与平面A1BD所成的角的余弦值.
解:(1)连接AC,AC∩BD=O,
连接A1O,则∠A1OA为二面角A﹣BD﹣A1的平面角
∵正方体ABCD﹣A1B1C1D1的棱长为a,
∴AO=a
∴tan∠A1OA=
(2)过A作AE⊥A1O,垂足为E,
∵AE⊥BD,A1O∩BD=O,
∴AE⊥平面A1BD
∴∠AA1O为AA1与平面A1BD所成的角
∵A1A=a,AO=a
∴A1O=a
∴AA1与平面A1BD所成的角的余弦值为
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网