题目内容

12.已知函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$-3,$\overrightarrow{a}$=(2$\sqrt{3}$sinx,4),$\overrightarrow{b}$=(2cosx,cos2x).
(Ⅰ)求函数f(x)的最大值及此时x的值;
(Ⅱ)在△ABC中,a,b,c分别为内角A,B,C所对的边,若f(A)为f(x)的最大值,且a=2,sinC=$\sqrt{3}$sinB,求△ABC的面积.

分析 (Ⅰ)利用平面向量数量积的运算及三角函数恒等变换的应用化简可得函数解析式f(x)=4sin(2x+$\frac{π}{6}$)-1,由正弦函数的图象和性质即可解得最大值及此时x的值.
(Ⅱ)由已知及(Ⅰ)可得:A=$\frac{π}{6}$.利用正弦定理及sinC=$\sqrt{3}$sinB,可得c=$\sqrt{3}b$,由余弦定理可得b,c,利用三角形面积公式即可得解.

解答 (本题满分为12分)
解:(Ⅰ)f(x)=$\overrightarrow{a}•\overrightarrow{b}$-3=4$\sqrt{3}$sinxcosx+4cos2x-3
=2$\sqrt{3}$sin2x+4×$\frac{1+cos2x}{2}$-3
=2$\sqrt{3}$sin2x+2cos2x-1
=4sin(2x+$\frac{π}{6}$)-1…4分
所以,当2x+$\frac{π}{6}$=2kπ$+\frac{π}{2}$,k∈Z时,f(x)取得最大值3,此时,x=k$π+\frac{π}{6}$,k∈Z…6分
(Ⅱ)∵f(A)为f(x)的最大值及A∈(0,π),由(Ⅰ)可得:A=$\frac{π}{6}$…7分
∵sinC=$\sqrt{3}$sinB,∴c=$\sqrt{3}b$,
由余弦定理可得:${a}^{2}={b}^{2}+3{b}^{2}-2\sqrt{3}{b}^{2}cosA$,把A=$\frac{π}{6}$,a=2代入解得:b=2,可得c=2$\sqrt{3}$.
∴△ABC的面积s=$\frac{1}{2}$bcsinA=$\frac{1}{2}×2×2\sqrt{3}×\frac{1}{2}$=$\sqrt{3}$…12分

点评 本题主要考查了平面向量数量积的运算及三角函数恒等变换的应用,正弦函数的图象和性质,考查了正弦定理,余弦定理,三角形面积公式的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网