题目内容
若函数满足,并且当时,,则当时, = _________________________ .
对定义在上,并且同时满足以下两个条件的函数称为函数。
① 对任意的,总有;
② 当时,总有成立。
已知函数与是定义在上的函数。
(1)试问函数是否为函数?并说明理由;
(2)若函数是函数,求实数组成的集合;
(3)在(2)的条件下,讨论方程解的个数情况。
若函数满足,并且当时,,则当时,= .
若函数满足,并且当时,,求当时,= .
函数在同一个周期内,当 时,取最大值1,当时,取最小值。
(1)求函数的解析式
(2)函数的图象经过怎样的变换可得到的图象?
(3)若函数满足方程求在内的所有实数根之和.
【解析】第一问中利用
又因
又 函数
第二问中,利用的图象向右平移个单位得的图象
再由图象上所有点的横坐标变为原来的.纵坐标不变,得到的图象,
第三问中,利用三角函数的对称性,的周期为
在内恰有3个周期,
并且方程在内有6个实根且
同理,可得结论。
解:(1)
(2)的图象向右平移个单位得的图象
(3)的周期为
同理,
故所有实数之和为