题目内容

设f(x)=asin(πx+α)+bcos(πx+α)+4,且f(2003)=5,则f(2004)=______.
因为f(2003)=asin(2003π+α)+bcos(2003π+α)+4=5
则asin(2003π+α)+bcos(2003π+α)=1
所以f(2004)=asin(2003π+α+π)+bcos(2003π+α+π)+4
=-asin(2003π+α)-bcos(2003π+α)+4
=4-[asin(2003π+α)+bcos(2003π+α)]
=4-1
=3.
故答案为:3.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网